General Description

The MAX532 is a complete, dual, serial-input, 12-bit multiplying digital-to-analog converter (MDAC) with output amplifiers. No external user trims are required to achieve full specified performance. The MAX532's 3wire serial interface minimizes the number of package pins, so it uses less board space than parallel-interface parts. The interface is SPI ${ }^{T M}$, QSPI ${ }^{T M}$ and Microwire ${ }^{\text {TM }}$ compatible. A serial output, DOUT, allows cascading of two or more MAX532s and read-back of the data written to the device.
The device's serial interface minimizes digital-noise feedthrough from its logic pins to its analog outputs. Serial interfacing also simplifies opto-coupler-isolated or transformer-isolated applications.
The MAX532 is specified with $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ power supplies. All logic inputs are TLL and CMOS compatible. It comes in space-saving 16-pin DIP and wide SO packages.

Applications

Automatic Test Equipment
Arbitrary Waveform Generators
Programmable-Gain Amplifiers
Motion Control Systems
Servo Controls

Functional Diagram

Features

- Two 12-Bit MDACs with Output Amplifiers
- Fast, 6MHz 3-Wire Interface
- SPI, QSPI, and Microwire Compatible
- $\pm 12 \mathrm{~V}$ Output Swing
- $\pm 10 \mathrm{~mA}$ Output Current
- $2.5 \mu \mathrm{~s}$ Settling Time to $\pm 1 / 2$ LSB
- Guaranteed Monotonic Over Temperature
- Low Integral Nonlinearity: $\pm 1 / 2 L S B$ Max
- Low Gain Tempco: 2ppm/ ${ }^{\circ} \mathrm{C}$
- Operates from $\pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Supplies
- Power-On Reset
- Available in 16-Pin DIP and Wide SO Packages

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE	ERROR (LSBs)
MAX532ACPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	$\pm 1 / 2$
MAX532BCPE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Plastic DIP	± 1
MAX532ACWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO	$\pm 1 / 2$
MAX532BCWE	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	16 Wide SO	± 1
MAX532BC/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$	± 1

Ordering Information continued on last page.

* Contact factory for dice specifications.

Pin Configuration

TMMicrowire is a trademark of National Semiconductor Corp. SPI and QSPI are trademarks of Motorola, Inc.

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

ABSOLUTE MAXIMUM RATINGS

Note 1: If $V_{S S}$ is open-circuited with $V_{D D}$ and either $A G N D$ applied, the $V_{S S}$ pin will float positive, exceeding the Absolute Maximum Ratings. A Schottky diode connected between VSS and GND ensures the maximum ratings will not be exceeded.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{DD}}=11.4 \mathrm{~V}\right.$ to $16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-11.4 \mathrm{~V}$ to $-16.5 \mathrm{~V}, \mathrm{AGNDA}=\mathrm{AGNDB}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{VREFA}$ and $\mathrm{VREFB}=+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, VOUT_connected to RFB_, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
STATIC PERFORMANCE (Note 1)							
Resolution				12			Bits
Relative Accuracy	INL		MAX532A			$\pm 1 / 2$	LSB
			MAX532B			± 1	
Differential Nonlinearity		Guaranteed monotonic				± 1	LSB
Zero-Code Offset Error		DAC latch loaded with all 0 s	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, MAX532			± 2	mV
			$\mathrm{T}_{\text {A }}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, MAX532A			± 3	
			$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, MAX532B			± 4	
Zero-Code Offset Temperature Coefficient		DAC latch loaded with all 0s			± 5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Gain Error		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{DAC}$ latch loaded with all 1s	MAX532A			± 2	LSB
			MAX532B			± 5	
		$\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, DAC latch loaded with all 1s	MAX532A			± 4	
			MAX532B			± 7	
Gain-Error Temperature Coefficient					± 2		ppm $/{ }^{\circ} \mathrm{C}$ of FSR
REFERENCE INPUTS (VREFA, VREFB)							
VREFA, VREFB Input Resistance				8	10	13	k Ω
VREFA, VREFB Input Resistance Matching					± 0.5	± 3.0	\%

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{DD}}=11.4 \mathrm{~V}\right.$ to $16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-11.4 \mathrm{~V}$ to $-16.5 \mathrm{~V}, \mathrm{AGNDA}=\mathrm{AGNDB}=\mathrm{DGND}=0 \mathrm{~V}, \mathrm{VREFA}$ and $\mathrm{VREFB}=+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, VOUT_ connected to RFB_, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.)

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

ELECTRICAL CHARACTERISTICS (continued)

(1) $\left(V_{D D}=11.4 \mathrm{~V}\right.$ to $16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-11.4 \mathrm{~V}$ to -16.5 V , $\mathrm{AGNDA}=A G N D B=D G N D=0 \mathrm{~V}$, VREFA and VREFB $=+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$, 1 VOUT_ connected to RFB, $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Multiplying Feedthrough Error		$\mathrm{VREF}=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} 10 \mathrm{kHz}$ sine wave; DAC latch loaded with all Os		-77		dB
Unity-Gain Small-Signal Bandwidth		VREF $=100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ sine wave; DAC latch loaded with all 1s		1.0		MHz
Full-Power Bandwidth		VREF $=20 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ sine wave; DAC latch loaded with all 1 s		125		kHz
Total Harmonic Distortion	THD	VREF $=6 \mathrm{~V}_{\mathrm{RMS}}$, 1 kHz sine wave; DAC latch loaded with all 1 s		-90		dB
Digital Feedthrough		$\overline{C S}=1$; transitions on SCLK, LDAC, DIN		1.1		nV -s
Digital Crosstalk		DACA code all 1s, DACB code transition from all 0s to all 1 s		10		nV-s
Output Noise Voltage		0.1 Hz to 10 Hz		2		$\mu \mathrm{V}_{\text {RMS }}$

Note 1: Static performance tested at $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}$. Performance over supplies guaranteed by PSR test.
Note 2: Guaranteed by design. Not subject to production testing.
Note 3: Open-drain output.

TIMING CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=11.4 \mathrm{~V}\right.$ to $16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-11.4 \mathrm{~V}$ to $\left.-16.5 \mathrm{~V}, \mathrm{AGNDA}=\mathrm{AGNDB}=\mathrm{DGND}=0 \mathrm{~V}\right)($ Notes 4,5$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP MAX	UNITS
SCLK Clock Frequency	${ }_{\text {f CLK }}$			6.25	MHz
SCLK Pulse Width High	t_{CH}		80		ns
SCLK Pulse Width Low	t_{CL}		80		ns
DIN to SCLK Rise Setup Time	tos		50		ns
DIN to SCLK Rise Hold Time	$t_{\text {DH }}$		0		ns
$\overline{\text { CS Fall to SCLK Rise Setup Time }}$	tcsso		50		ns
$\overline{\text { CS Rise to SCLK Rise Setup Time }}$	tcss1		50		ns
SCLK Fall to CS Fall Hold Time	tcSH0		5		ns
SCLK Rise to CS Rise Hold Time	$\mathrm{t}_{\mathrm{CSH}} 1$		80		ns
CS Pulse Width High	tcsw		120		ns
SCLK Fall to DOUT Valid (Note 6)	too	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\text {PULL-UP }}=1 \mathrm{k} \Omega$ to 5 V	0	200	ns
$\overline{\text { CS Fall to DOUT Enable (Note 7) }}$	tDV	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\text {PULL-UP }}=1 \mathrm{k} \Omega$ to 5 V		100	ns
CS Rise to DOUT Disable (Note 7)	$\mathrm{t}_{\text {TR }}$	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{R}_{\text {PULL-UP }}=1 \mathrm{k} \Omega$ to 5 V		60	ns
LDAC Pulse Width Low	t LDAC		60		ns
$\overline{\text { CS Rise to LDAC Fall Setup Time }}$	tLDACS		100		ns

Note 4: All input signals are specified with $t_{R}=t_{F} \leq 5 n$. Logic input swing is 0 V to 5 V .
Note 5: See Figure 1.
Note 6: Timing is for SCLK fall to DOUT fall to 0.8 V , or for SCLK fall to DOUT rise to 2.4 V . Additional time must be added for any larger passive RC pull-up delay.
Note 7: DOUT enable: DOUT falls to 4.5 V from 5.0 V . DOUT disable: DOUT rises to 0.5 V from 0 V .

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

_Typical Operating Characteristics (continued)

$\left(V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right.$, unless otherwise noted. $)$

$\mathrm{A}=\mathrm{V}_{\text {OUTA }}, 50 \mathrm{mV} / \mathrm{div}$ TIMEBASE $=2 \mu \mathrm{~s} / \mathrm{div}$ $V_{\text {REFA }}= \pm 100 \mathrm{mV}$ SQUARE WAVE

LARGE-SIGNAL PULSE RESPONSE

A = VOUTA, $5 \mathrm{~V} / \mathrm{div}$ TIMEBASE $=2 \mu \mathrm{~s} / \mathrm{div}$ VREFA $= \pm 10$ V SQUARE WAVE

Pin Description

PIN	NAME	
1	RFBA	Feedback Resistor for DACA
2	VREFA	Reference Input for DACA
3	VOUTA	Voltage Output for DACA
4	AGNDA	Analog Ground for DACA
5	AGNDB	Analog Ground for DACB
6	VOUTB	Voltage Output for DACB
7	VREFB	Reference Input for DACB
8	RFBB	Feedback Resistor for DACB
10	VGS	Negative Supply Voltage
11	SCLK	Digital Ground
12	DOUT	Serial Clock Input Serial Data Output. Open-drain N-channel MOSFET output: requires external pull-up resis- clock cycles from DIN.
13	CS	Serial Data Input. CMOS- and TTL-compatible input. Data is clocked into DIN on the rising edge of SCLK. CS must be low for data to be clocked in.
14	Chip-Select Input, active low. Data is shifted in and out when CS is low. DAC latches are updated when CS is high and LDAC is low.	
15	VDAC	Asynchronous Load DAC Input, active low. DAC latches are updated when CS is high and LDAC is low.
16	Positive Supply Voltage	

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

Figure 1. Timing Diagram

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

MAX532
Timing Diagrams (continued)

Figure 2. 3-Wire Interface Timing Diagram ($\overline{L D A C}=D G N D$)

Figure 3. 4-Wire Inferface Timing Diagam

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

Figure 4. Connections for Microwire

Detailed Description

Digital Interface
The MAX532 is Microwire and SPI compatible (Figures 4 and 5). Both DACs are programmed by writing three 8-bit words (see Figures 2 and 3, and the Functional Diagram). Serial data is clocked into the data registers MSB first, with DACB information preceding DACA information. Data is clocked in on the rising edge of SCLK while CS is low. With CS high, data can not be clocked into DIN, and DOUT is high impedance. SCLK can be driven at rates up to 6.25 MHz .
The MAX532 uses either a 3-wire or a 4-wire serial interface. Three wires may be used ($\overline{C S}$, DIN, SCLK) by tying LDAC low. With LDAC low, the DACs are updated simultaneously when CS goes high (see Figure 2 and the Functional Diagram). The 3-wire interface may be used if the MAX532 is used alone, or if two or more MAX532s are cascaded (DOUT of one device tied to DIN of the other) (Figure 6).
The 4-wire interface ($\overline{\mathrm{LDAC}}, \overline{\mathrm{CS}}, \mathrm{DIN}, \mathrm{SCLK}$) is required if several serial devices are tied to the same data line, and it is desirable to update them simultaneously (Figure 7). With the 4-wire interface, the DACs are updated when LDAC goes low (see Figure 3 and the Functional Diagram).
A serial output, DOUT, allows cascading of two or more MAX532s and allows read-back of the data written to

Figure 5. Connections for SPI
the device's 24-bit shift register. The data at DOUT is delayed 24 clock cycles from the data at DIN (see Figures 2 and 3, and the Functional Diagram). DOUT is an open-drain N -channel MOSFET that requires an external pull-up resistor (typically $1 \mathrm{k} \Omega$ if pulled up to +5 V , and $3 \mathrm{k} \Omega$ if pulled up to +12 V or +15 V). Logic levels are guaranteed with sink currents up to 5 mA (see Electrical Characteristics). Output data changes on the falling edge of SCLK when $\overline{C S}$ is low. If $\overline{C S}$ is high, DOUT is three-state (high-impedance).

Daisy-Chaining Devices

Any number of MAX532s can be daisy-chained by connecting the DOUT pin of one device (with a pull-up resistor) to the DIN pin of the following device in the chain (Figure 6).
When daisy-chaining devices, $\mathrm{t}_{\mathrm{CSS}}$ ($\overline{\mathrm{CS}}$ low to SCLK high $)$, must be the greater of $t_{D V}+t_{D S}$ or $t_{D S}+\left(t_{R C}+t_{T R}\right.$ $-\mathrm{t}_{\mathrm{CS}}$), where $\mathrm{t}_{\mathrm{CSW}}$ is the $\overline{\mathrm{CS}}$ pulse width used in the system and the term ($\mathrm{t}_{\mathrm{RC}}+\mathrm{t}_{\mathrm{TR}}-\mathrm{t}_{\mathrm{CSW}}$) accounts for the time spent charging the DOUT capacitance with the external pull-up resistor. So, for $t_{R C}<250 \mathrm{~ns}, \mathrm{t}_{\mathrm{CSS}}$ is simply $t_{D V}$ $+t_{D S}$. Calculate $t_{R C}$ using the following equation:

$$
t_{R C}=R_{P} \times C \times \ln \left(V_{P U L L-U P} /\left(V_{P U L L}-U P-2.4 V\right)\right)
$$

where $\mathrm{V}_{\mathrm{PULL}}$-UP is the voltage that the pull-up resistor is connected to, R_{p} is the value of the pull-up resistor, and C is the capacitance at DOUT. Values of $t_{R C}$ are given in Table 1.

Dual, Serial-Input,

 Voltage-Output, 12-Bit MDACMAX532

Figure 6. Daisy-chained or individual MAX532s are simultaneously updated by bringing $\overline{C S}$ high when using the 3-wire interface (LDAC = DGND).

Figure 7. Multiple devices sharing a common DIN line may be simultaneously updated by bringing LDAC low. CS1, CS2, CS3, . . ., are driven separately, thus controlling which data are written to devices 1, 2, 3, .

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

Table 1. $t_{R C}$ Delay Times

VPULL-UP (V)	$\mathbf{C}(\mathbf{p F})$	$\mathbf{R P}_{\mathbf{P}} \mathbf{k} \Omega$)	$\mathbf{t}_{\mathbf{R C}}(\mathbf{n s})$
4.5	20	1	15
4.5	35	1	27
4.5	50	1	38
4.5	100	1	76
4.5	150	1	114
11.4	20	3	14
11.4	35	3	25
11.4	50	3	35
11.4	100	3	71
11.4	150	3	106
13.5	20	3	12
13.5	35	3	21
13.5	50	3	29
13.5	100	3	59
13.5	150	3	88

With the values of t_{RC} given in Table $1, \mathrm{t}_{\mathrm{CSs}}$ is always given by tDV $+t_{D S}$. For different values of R or $\mathrm{C}, \mathrm{t}_{\mathrm{RC}}$ must be calculated to determine tcsso.
Additionally, the maximum clock frequency is limited to

$$
\mathrm{f}_{\mathrm{CLK}}(\max)=\frac{1}{2 x\left(\mathrm{t}_{\mathrm{DO}}+\mathrm{t}_{\mathrm{RC}}-15 \mathrm{~ns}+\mathrm{t}_{\mathrm{DS}}\right)} .
$$

For example, with $\mathrm{t}_{\mathrm{RC}}=15 \mathrm{~ns}$ ($5 \mathrm{~V} \pm 10 \%$ supply with $1 \mathrm{k} \Omega$ pull-up), the maximum clock frequency is 2 MHz .

Digital-to-Analog Section
Figure 8 shows a simplified circuit diagram for one of the DACs and the output amplifier.
A segmented scheme is used to improve linearity, whereby the two MSBs of the 12-bit data word are decoded to drive the three switches, SA, SB, and SC. The remaining ten bits drive the switches S0 through S9 in a standard R-2R ladder configuration.
Each of the switches, SA, SB, and SC, steers $1 / 4$ of the total reference current with the remaining $1 / 4$ passing through the R-2R section.
The output amplifier and feedback resistor perform the current-to-voltage conversion, giving the following:
VOUT_= -D x VREF_
where _ denotes A or B, and D is the fractional representation of the digital word. (D can be set from 0 to 4095/4096.)

Figure 9. Unipolar Binary Operation

Figure 8. Simplified D/A Circuit Diagram

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

Output Amplifiers
The output amplifiers are stable with any combination of resistive loads $\geq 2 \mathrm{k} \Omega$ and capacitive loads $\leq 100 \mathrm{pF}$. They are internally compensated, and settle to $\pm 0.01 \%$ FSR ($1 / 2 \mathrm{LSB}$) in $2.5 \mu \mathrm{~s}$.

Unipolar Configuration
Figure 9 shows DACA connected for unipolar binary operation. Similar connections apply for DACB. When V_{IN} is an AC signal, the circuit performs two-quadrant multiplication. Table 2 shows the codes for this circuit.

Bipolar Operation

Figure 10 shows the MAX532 connected for bipolar operation. The coding is offset binary, as shown in Table 3. When V_{IN} is an AC signal, the circuit performs four-quadrant multiplication. To maintain gain error specifications, resistors R1, R2, and R3 should be ratiomatched to 0.01%.

Table 2. Unipolar Code Table

DAC Latch Contents	Analog Output, V ${ }_{\text {OUT }}$
MSB LSB	
111111111111	$-\mathrm{V}_{\text {IN }} \times(4095 / 4096)$
100000000000	$-\mathrm{V}_{\text {IN }} \times(2048 / 4096)=-1 / 2 \mathrm{~V}_{\text {IN }}$
000000000001	$-\mathrm{V}_{\text {IN }} \times(1 / 4096)$
000000000000	0 O

$1 \mathrm{LSB}=\mathrm{V}_{\mathrm{IN}} / 4096$

Figure 10. Bipolar Operation

Applications Information

Layout, Grounding, and Bypassing

For best system performance, use printed circuit boards with separate analog and digital ground planes. Wirewrap boards are not recommended. The two ground planes should be tied together at the low-impedance power-supply source, as shown in Figure 11.
The board layout should ensure that digital and analog signal lines are kept separate from each other as much as possible. Do not run analog and digital lines parallel to one another.
The output amplifiers are sensitive to high-frequency noise in the $V_{D D}$ and $V_{S S}$ power supplies. Bypass these supplies to the analog ground plane with $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ bypass capacitors. Minimize capacitor lead lengths for best noise rejection.

Table 3. Bipolar Code Table

DAC Latch Contents	Analog Output, $\mathrm{V}_{\text {OUT }}$
MSB LSB	
111111111111	$+\mathrm{V}_{\text {IN }} \times(2047 / 2048)$
100000000001	$+\mathrm{V}_{\text {IN }} \times(1 / 2048)$
100000000000	0 V
011111111111	$-\mathrm{V}_{\text {IN }} \times(1 / 2048)$
000000000000	$-\mathrm{V}_{\text {IN }}+(2048 / 2048)=-\mathrm{V}_{\text {IN }}$
$1 \mathrm{LSB}=\mathrm{V}_{\mathrm{IN}} / 2048$	

Figure 11. Power-Supply Grounding

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

Figure 12. Programmable-Gain Amplifer

Programmable-Gain Amplifier (PGA)

The DAC/amplifier combination, along with access to the feedback resistors, makes the MAX532 ideal as a programmable-gain amplifier. In this application, the DAC functions as a programmable resistor in the feedback loop. This type of configuration is shown in Figure 12, and is suitable for AC gain control. The DAC code controls the gain for the PGA. As the code decreases, the effective DAC resistance increases, and so the gain also increases. The transfer function is given by:

$$
\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{IN}}=-\mathrm{REQA} / R F B A
$$

where RFBA is the value of the feedback resistor (R/2), and REQA is the effective DAC resistance controlled by the digital input code:

$$
\operatorname{REQA}=\frac{\mathrm{R}}{2}\left(\frac{4096}{\mathrm{CODE}}\right),
$$

where CODE is the DAC code in decimal. The transfer function is thus:

$$
\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}=\frac{-4096}{\mathrm{CODE}}
$$

The code may be programmed between 1 and (212-1). The zero code is not allowed, as it results in an openloop amplifier response.

Power-On Reset
On power-up, the internal DAC latches are set to 00 00.

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

(2)Ordering Information (continued)
**Contact factory for availability and processing to MIL-STD-883B.

\qquad Chip Topography

TRANSISTOR COUNT: 1324; SUBSTRATE CONNECTED TO VDD

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

ZEGXVW

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.093	0.104	2.35	2.65
A1	0.004	0.012	0.10	0.30
B	0.014	0.019	0.35	0.49
C	0.009	0.013	0.23	0.32
D	0.398	0.413	10.10	10.50
E	0.291	0.299	7.40	7.60
e	0.050 BSC		1.27	
BSC				
H	0.394	0.419	10.00	10.65
h	0.010	0.030	0.25	0.75
L	0.016	0.050	0.40	1.27
α	0°	8°	0°	8°

PACKAGE

Dual, Serial-Input, Voltage-Output, 12-Bit MDAC

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

